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Summary

Fairfield Smith's variance law provides a relationship of the coefficient of
variation (C,,) of thevariable understudyamong plots of size Jtr. From the
empirical law the optimum plot size is determined usingthe 'maximum curva
ture technique'. To establish relationship between €„ and x, unweighted least
squares technique is commonly employed to estimate the regression coeffici
ents. In the present.paper, a justification isgiven foran alternative assumption
namely that the error variance varies proportional to x". Likelihood is maxi
mised forg using the Fibonacci search technique of optimization. Estimates
of regression coefficient and their variances arefound tobesame as through
weighted least square technique. This assumption, is supported by results
obtained forfour sets of uniformity trial dataonvegetable crops andcompared
with those using the least squares method suggested by Fairfield Smith.

Keywords : Maximum likelihood method, Fabonacci Search, Heteroscedasti-
city.

Introduction

A method for determining the optimum size of an experimental unitor
plot which is widely used is 'the maximum curvature method'. It uses
the coeflScients of variation (C.V.) of the variable under study for various
plot sizes from a uniformity trial data. A free-hand graph is drawn
between the coefficients ofvariation and the plot sizes and the optimum
plot size determined from the graph as one just beyond the point of
maximum curvature. In place ofa free-hand graph, theuse of Fairfield
Smith's Variance Law [8] is more reliable. It is expressed as :

log Vg = log Vi + b log X, (1)
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where Vx is the variance of the character under study per unit area
among plots of size x units. Vi and b are constants. Using a simple
linear transformation on the log variable, (1) can be alternatively express
ed in terms of the coeflBcient of variation as :

log C« = « + P log (2)

where C® is the coefficient of variation among the plots of size x units
and a and p are constants.

2. Estimation of the Constants « and ^

Given and X{ for the ith plot (/ = 1, 2, . . . , n), the estimation
of a and 3 generally proceeds by fitting the following linear regression of
log variables using the least squares technique :

yi = K + ^Zi + ui, (3)

where yt = log C« and Zi = log ;c,.

The error term «/ in (3) is commonly assumed to be distributed norm
ally with mean zero and constant variance

However, if m observations of smaller plots of size unity are taken for
uniformity trial data, then a plot size x will need a combination of x
smaller units. Thus there will be mjx plots of size and the C.V. will be
calculated on the basis of these m/x plots. Thus the precision of C.V.
will depend upon size x, since m is constant. To assume therefore that
the error u is independent of plot size x and homoseedastic as is so often
done in the usual regression analysis of C) does not seem to be justified.
It is also well known that in the above situation, the least squares estima
tes of « and p of the regression (3) are inefficient (both for small as well
as large samples) thereby providing misleading results for the confidence
intervals and critical regions and ultimately leading to incorrect inferences
about the population parameters. For these reasons, the following model
in which the error variance al is assumed to be proportional to x' where
S' is a constant,, has been examined in detail. Under this assumption, the
regression equation (3) takes the form

sj (4)

where ui = •si = xfl^ si, = wr'd2 and

This involves two new parameters g and the first of which is, the
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measure of heteroscedasticity and the second, the variance of the error
s/ assumed now to be constant for all / and independent of Xi.

Jacquez, et al. [4] have extended the theory ofsimple linear regression
to the case of non-uniform error variances for the situation in which
replicates are available at each sample point in the domain of the inde
pendent variable. They have shown that the methods of weighted least
squares and the maximum likelihood (ML) perform equally better as
compared to that of least squares. Kmenta [5] has dealt with the case of
a model similar to [4] and has suggested the use of maximum likelihood
estimation under such a set-up. Following Kmenta, it can deeasily shown
that the following are the maximum likelihood estimates of k, pand
a| for a known g :

« = (5)

_ Hwijyi - J>«,) (zi - 2w)

ai = Sw, [y, P(z, - 2)]" (7)

where = and^„= ^w/zr

Hence the estimates of oc, p and k| are saime as obtained by least square
method. Also, the value L of-the maximum likelihood is given by ;

L= - i log 271 - ^ log a| - ASzi-~
- « - M". (8)

For estimation of g, L to be maximised can be taken as

s 1L= constant - -^ILzi—-^ ILx'̂ (yi - a- ^x,)^

Now owing to extreme non-linearities of tlie equations (5)-(8) it is not
possible to use them for the direct estimation of the parameters in ques
tion. We have therefore used well known iterative method namely the
Fibonacci search techniques to choose that value of g for which the like
lihood L of (8) is maximum and to obtain therefore the corresponding
estimates of the other parameters. The application of this method
depends on two factors namely that : (i) an initial interval is known
which contains the maximum; and (ii) the function is unimodal within
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the interval. Both these factors have been verified for all the four sets of
data considered in this paper by observing the nature of L from equa
tions (5) to (8) for a wide range ofg = 0 (O.I) 3.0. The value of^finally
iterated by this method which maximises the likelihood to the desired
accuracy is used in (5) to (7) to obtain the corresponding maximum^like
lihood estimates a, p and or|. Following Kmenta [5] the variance of « and
P are given by (9) and (10) respectively :

Var («) = ai f (9)

Var (P) = a| 1

LSw, (Zi - (10)

Considering correlation between g and asymptotic variance ofg is
given by the expression

Var (5) = s(z,-f)»" (11)

The coefficient ofmultiple determination is calculated for both the
models (3) and (4) from the expression

\

-

Finally, using the estimated values of the parameters, the required
optimum plot size is determined by the maximum curvature technique.

3. Data and Results

Using the above procedure, the fitting ofmodel (4) has been done on
four sets ofuniformity trial data. The first two sets are related to Bhindi
(Abelmoschus Esculentus L,) crop for the year 1960 61 and 1981-82 taken
from the ICAR monograph [7], The third set is on Onion {Allium
Cepa L.) crop used by Gupta and Raghavarao [2] andjhe last one on
Radish (Rachamus Sativus L.) crop reported by Kumar [6], For Bhindi,
52 pairs of C. Vs and plot sizes are available for each of the two years!
For onion and radish crops, use has been made of97 pairs ofC. Vs and
plot sizes and 47 pairs ofC. Vs and plot sizes respectively.
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Table 1 summarises the results of the analysis for the above data-sets.
It may be noticed that equation (4) with = 0 is equivalent to (3)
unweighted and the same with g = 1 is equivalent to (3) weighted to the
first order of approximation [1] and that the estimators of the former
are same as the L.S. estimators of the latter. For each set of data in the

table, the first row corresponds to g = 0, the second to the estimated

TABLE 1—SUMMARY OF ANALYSIS RESULTS

Crop

Bhindi

1960-61

Bhindi

1961-62

Radish

(plot size
multiplied
by 100)

Onion

m

1456 1.0115*

(0.3625)

1.3230

(0.0205)

1.3666

(0.0150)

1 1.3662

(0.0150)

0 1.5426

(0.0151)

1456 0.3721® 1.5530
(0.3625) (0.0134)

1 1.5698

(0.0123)

0 2.0378

(0.0528)
720 0.8669* 2.0923

(0.1926) (0.0260)

1 2.1064

(0.0239)

0 2.1539

(0.0674)

576 0.6743t. 2.1472
(0.1261) (0.0440)

1 2.14Q3
(0.0357)

-0.1179

(0.07.31)

-0.1811

(0.0230)

-0.1803

(0.0220)

-0.1378

(0.0170)

-0.1513

(0.0170)

-0.1772

(0.0188)

-0.2828

(0.0172)
-0.3040

• (0.0106)

-0.3099

(0.0100)

-0.2963

(0.0208)

-0.2941

(0.0147)

-0.2917

(0.0126)

<?£{ R* L Optimum
plot size

0.0577 0.3426 75.54 5.06

0.0201 0.2305 79.70 7.57

0.0204 0.2335 79.67 7.54

0.0425 0.5678 91.46 8.92

0.0288 0.5653 92.48 9.72

0.0167 0.5149 90.10 11.11

0.0690 0.8570 , 59.97 32.24

0.0024 0.8495 74.96 35.85

0.0015 0.8438 74.60 36.81

0.0751 0.6817 114.56 39.89

0.0058 0.6817 118.83 39.40

0.0018 0.6815 117.70 38.88

•andf indicate statistical significance from zero and one respectively both at 5 per
cent probabilities level and @ indicates statistical significance from one at 10 percent
probability level.
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g which yields the maximum value of L and the third tog = 1. The
standard errors of the corresponding estimates are given in brackets.

We find from the table that the R' value decreases (slightly) in case of
model (4). The most striking observation is that in comparision to (3)
unweighted (i.e. with g = 0), the maximum likelihood L of (4) clearly
increased in all the four cases and that too very strikingly in certain in
stances as in the case,of radish crop although this increase is not so very
large when compared with weighted (i.e. g = 1). Further, g is found to
be significantly different from zero at 5 percent level of significance for
Bhindi 1960-61, Radish and Onion thus showing that the error compo
nent is significantly dependent on the plot size in all these cases. It is
worth noting in case of onion and Bhindi 1961-62 that their estimated
values]of g are significantly different from unity at 5 percent and 10 per
cent probability level respectively.

It thus appears that model (4) is a plausible specification for the data
taken into consideration and that the assumption of independence bet
ween the error and the plot size is untenable on both logical and empiri
cal grounds. While Fairfield Smith has suggested a method which imposes
artificially a value as ^ = 1 to take care of this heteroscedasticity, the
superiority of the present method lies in the fact that the data themselves
are allowed to determine the value of g and in yielding the highly desir
able maximum likelihood estimate. As will be seen from the table, there
are cases when g's are significantly different from unity and this is so pro
posed for large and small m as well as n.
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